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Abstract
The attractive Casimir force acting on a micrometer-sphere suspended in a
spherical dip, close to the wall, is discussed. This set-up is in principle directly
accessible to experiment. The sphere and the substrate are assumed to be made
of the same perfectly conducting material.

PACS numbers: 03.70.+k, 12.20.−m, 42.50.Pq

1. Introduction

Experiments aiming at testing the theory of the Casimir effect ([1]; for recent reviews see
[2–4]) are more numerous than what one might perhaps think. Let us here only highlight some
examples, starting with the classic experiment of Sparnaay [5, 6]. This experiment tested the
Casimir force between two parallel plates, made of chromium steel, chromium and aluminium.
With the exception of aluminium (whose problems most likely were due to impurities), the
results were in good qualitative agreement with the Lifshitz formula [7], calculated from
the assumption of perfect reflecting boundaries. The experimental technique was based upon
the use of a spring balance (sensitivity about 10−3 dynes), sensing the attractive force. The
plates were assigned parallel by visual inspection.

Another well-known classic experiment is the one of Sabisky and Anderson [8],
dealing with the properties of liquid helium films adsorbed on cleaved surfaces of alkaline-
earth fluoride crystals at T = 1.38 K. Film thicknesses measured by means of acoustic
interferometry were found to lie between 1 and 25 nm. At thermal equilibrium the film
thickness gets a value that is determined thermodynamically, given the Lifshitz formula for
the Casimir force as input. The results measured were in very good quantitative agreement
with the Lifshitz expression.

The modern series of experiments was initiated with the seminal work of Lamoreaux
[9]. He used a balance based on a torsion pendulum to measure the Casimir force between
a gold-coated spherical lens (radius about 12 cm) and a flat plate. The lens was mounted
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Figure 1. The proposed experimental set-up. A metal sphere of radius a is suspended in a
spherically formed metallic dip of radius b.

on a piezo stack and the plate on one arm of the torsion balance. The Casimir force would
result in a torque, which was detected via a capacitance measurement. Maximum separation
between the two surfaces was 12.3 µm. In a later note, Lamoreaux included corrections,
such as those arising from finite conductivity [10], and with Buttler [11] he gave recently an
analysis of thermal noise in torsion pendulums. The Lamoreaux experiment gave rise to a
surge of activity, both experimentally and theoretically.

In the most recent years, the atomic force microscope (AFM) used in particular by
Mohideen et al [12–14] has led to the most accurate determination of the Casimir force
between a micrometer-sized sphere and a plate. By using a sphere/plate configuration, one
avoids the strict requirement about parallelism that is so demanding in the case of parallel
plates. The accuracy is now of the order of a few per cent; this accuracy being actually under
current debate mainly because of the temperature corrections.

We shall not here go into further detail as regards the experimental status. A detailed
exposition on the experiments up to 2001 is given in the review of Bordag et al referred to
earlier [4], and a detailed survey of the developments in the last four years is given in Milton’s
review [2], section 3.6. We mention, though, the impressive plane-plate experiment of Bressi
et al [15]; they were able to guarantee a parallelism of the plates to better than 3 × 10−5 rad.
(It may even be that this experiment has been the first to measure the temperature corrections
to the Casimir force; cf the discussions on temperature corrections in [16, 17].)

The main purpose of the present letter is to propose a new variant of the sphere-substrate
configuration, namely a metal sphere suspended in a spherically formed metallic dip (see
figure 1). We will make a simple, approximate, calculation of the vertical Casimir force on the
sphere, utilizing the known theory for the Casimir effect under conditions of perfect spherical
symmetry. There exist several theoretical treatments of the Casimir effect under conditions
of spherical symmetry—cf [18–22] for instance—but the experimental tests of this kind of
Casimir forces have so far been absent. Leaving aside practical difficulties such as the need of
keeping the sphere in the dip in a stable lateral position, we hope nevertheless that the present
simple idea can be of interest to experimentalists.

Temperature corrections are not included in the main formalism but are discussed in
section 3. We use natural units, h̄ = c = 1, in the intermediate calculations, and we employ
Heaviside–Lorentz units.

2. Geometrical set-up

We begin by assuming perfect spherical symmetry: let there be two concentric perfectly
conducting singular shells situated at r = a and r = b. We shall be interested in the
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distribution of fields in the annular region a < r < b, at T = 0. The most natural way of
approach when describing this situation is to make use of the Green functions; for the case
of spherical symmetry this kind of theory was worked out by Milton et al [18]. There occur
two scalar Green functions in the problem, Fl(r, r

′) and Gl(r, r
′). As shown in [19] for the

double-shell situation, the electromagnetic boundary conditions at r = a, b transform into the
following conditions for the scalar Green functions:

Fl(a, r ′) = 0,
d

dr
[rGl(r, r

′)]r=a = 0, (1)

and similarly for r = b.
The surface force density, here called fb, on the outer surface r = b is calculated from

Maxwell’s stress tensor. To this end we need the two-point functions, which are in turn given
by the components of the Green functions. Some calculation yields for the radial two-point
function for the electric field

〈
E2

r (b−)
〉 = 1

πb4

∫ ∞

0

dy

y

∞∑
l=1

2l + 1

4π
l(l + 1)

sl(y) − AG(ay/b)el(y)

s ′
l (y) − AG(ay/b)e′

l (y)
, (2)

whereas the corresponding transverse function for the magnetic field becomes

〈H⊥(b−)〉= − 1

πb4

∫ ∞

0
y dy

∞∑
l=1

2l + 1

4π

[
sl(y)− AG(ay/b)el(y)

s ′
l (y)− AG(ay/b)e′

l (y)
+

s ′
l (y)− AF (ay/b)e′

l (y)

sl(y)− AF (ay/b)el(y)

]
.

(3)

Here
〈
E2

r (b−)
〉

is shorthand for 〈Er(r)Er(r
′)〉r ′→r=b−, etc; y means the nondimensional

frequency y = ω̂b with ω̂ being the Wick-rotated frequency, and sl(x) = √
πx/2 Iν(x),

el(x) = √
2x/πKν with ν = l + 1/2 are the Riccati-Bessel functions defined such that their

Wronskian is W {sl, el} = −1. Prime means derivative with respect to the whole argument.
The coefficients AF and AG in equation (3) are

AF (x) = sl(x)

el(x)
, AG(x) = s ′

l (x)

e′
l (x)

. (4)

The reason why the integration over y runs to infinity in equation (3) is that the medium in
the surfaces is assumed to be perfectly conducting (i.e., with permittivity ε → ∞) for all
frequencies.

The other two-point functions are found to vanish,〈
E2

⊥(b−)
〉 = 〈

H 2
r (b−)

〉 = 0, (5)

so it is simple to find the surface force density at r = b via use of the Maxwell stress tensor:

fb = 1

2

[−〈
E2

r (b−)
〉
+

〈
H 2

⊥(b−)
〉]

r̂

= −1

2πb4

∫ ∞

0
y dy

∞∑
l=1

2l + 1

4π

[
s ′
l (y) − AF (ay/b)e′

l (y)

sl(y) − AF (ay/b)el(y)
+

s ′′
l (y) − AG(ay/b)e′′

l (y)

s ′
l (y) − AG(ay/b)e′

l (y)

]
r̂.

(6)

The surface force Fz that we are interested in, is the z component of the surface force density
integrated over the lower hemisphere, 1

2π < θ < π, 0 < φ < 2π . This integration is
trivial, since the magnitude of the surface force density contains no angular dependence. It is
moreover convenient to rewrite Fz in such a way that the mutual contribution is separated out.
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Some formal manipulations yield

Fz = 1

2b2

∫ ∞

0
y dy

∞∑
l=1

2l + 1

4π

[
s ′
l (y)

sl(y)
+

s ′′
l (y)

s ′
l (y)

]

+
1

2b2

∫ ∞

0
y dy

∞∑
l=1

2l + 1

4π

∂

∂y
ln

[(
1 − AF (x)

el(y)

sl(y)

)(
1 − AG(x)

e′
l (y)

s ′
l (y)

)]
. (7)

Here, x = ay/b is a function of y, but when taking the partial derivative with respect to y in the
last term, x and y are regarded as independent variables. The first term describes the self-force
on the surface r = b, due to the fluctuating fields in the annular region. (If we were taking
into account the contribution from the outer region r > b also, as would strictly speaking be
necessary when considering a double spherical shell, then there would be an analogous term
e′
l/el + e′′

l /e
′
l in addition; cf [18].) In our case, self-forces are not of interest. The physically

important force thus becomes

Fz = 1

2b2

∫ ∞

0
y dy

∞∑
l=1

2l + 1

4π

∂

∂y
ln

[(
1 − AF (x)

el(y)

sl(y)

) (
1 − AG(x)

e′
l (y)

s ′
l (y)

)]
. (8)

The expression is positive, corresponding to an upward directed force on the outer wall r = b,
which in turn means a downward-directed force on the sphere. The expression is finite as it
stands; no regularization procedure is necessary.

To make the expression more practically useful, we employ the Debye expansion for the
Riccati-Bessel functions. The calculation is parallel to that in [19], and will not be repeated
here. We give the result in dimensional form, when reintroducing a instead of b and working
to the first order in the small quantity d/a,

Fz = π2h̄c

240d4
(πa2)

(
1 +

4

3

d

a

)
. (9)

Here we have separated out the standard expression π2h̄c/240d4 for the Casimir surface force
density between flat parallel plates. It is seen from equation (9) that the curvilinear geometry
leads to a slightly increased force as compared with the force between parallel plates having
an effective area of πa2. For instance, if a = 50 µm, d = 1 µm, the last correction term in
equation (9) amounts to 2.6%.

3. Discussion

The most characteristic property of the present proposal is that it suggests how the Casimir
formalism worked out for spherically symmetric geometries can be exposed to an experimental
test. As far as we know, this is the first proposal of such a kind. Of course, our calculation
above is only approximate. Let us make a few final remarks:

• The most evident simplification that we have made is to assume that the field distribution
is the same as in the case of perfect spherical symmetry, all over the dip. Of course,
near θ = 1

2π there are ‘stray’ fields making the distribution different from the perfectly
symmetric case. A circumstance, which however diminishes the influence from the stray
fields, is that z component becomes only slightly influenced near θ = 1

2π . We can estimate
the magnitude of the effect by performing the integral over θ in the Fz calculation from
1
2π + � to π , instead of from 1

2π to π . The result is that expression (9) gets multiplied
with a correction factor (1 − sin2 �). For example, taking the error introduced by the
stray fields to be � = 50, we get a decrease in Fz of about 0.8%. It would be quite a
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difficult task to make an accurate calculation of the influence from the stray fields; one
would have to solve the complicated field distribution problem around θ = 1

2π .
• It is of interest to compare our results with the new technique proposed by Jaffe and

Scardicchio based on optical paths [23–25]. This technique assumes classical optics; it
is most accurate at short wavelengths where diffraction is not important. The technique
has so far been applied to the case of scalar fields. The main procedure is to write the
Casimir energy as a trace of the Green function; then the Green function is replaced by
the sum over contributions from optical paths labelled by the number of reflections from
the conducting surfaces. There are two central quantities in the analysis: first, there is the
length lr (x) of the closed geometric optics ray beginning and ending at the point x and
reflecting r times from the surfaces; secondly, there is the so-called enlargement factor
�r(x) of classical optics associated with the r-reflection path beginning and ending at x.
Consider first the simple sphere–plate configuration. The original wavefront leaving x is
spherical. The first reflection from the sphere produces a new wavefront, with in general
two unequal radii of curvature. When the next incident upon the sphere, the asymmetric
wavefront will be transformed in a complicated manner, not yet worked out even for the
scalar field. If we now consider our proposed experimental setting where there are two
curved surfaces, this method appears to be quite complicated. We shall therefore not try to
work out this, but it is of interest nevertheless to compare our results with those obtained
for the sphere–plate configuration.

Let f optical(d/a) be the correction factor for a sphere and a plate, calculated by
the optical method. This factor gives the ratio between the Casimir force and the force
obtained for two parallel plates separated by a gap d. From [24] we have, to the first order
in d/a,

f optical(d/a) = 1 + 0.05d/a. (10)

We can compare this with the result calculated from the proximity force approximation
(PFA) [27]. Actually there is an ambiguity in the PFA: the basic idea of the method is to
apply the parallel-plate result to infinitesimal bits of the (in general) curved surfaces and
integrate them up. The ambiguity lies in which surface is chosen for the integration. The
physically best choice turns out to be the plate-based PFA, according to which

f
plate
PFA (d/a) = 1 − (1/2)d/a. (11)

It is seen that even the signs in the correction terms in equations (10) and (11) are different.
Now, the sphere–plate situation for the scalar field has actually been calculated numerically
to a high accuracy [26]. The numerical results show clearly that the interaction energy
increases with increasing values of d/a. From figure 4 in [24] it is seen that the optical
approximation works well up to d/a ≈ 0.2.

Finally let us compare these results with our expression (9) for the Casimir force.
We see that our expression corresponds to the correction factor

f (d/a) = 1 + (4/3)d/a. (12)

The experimental configuration that we have proposed in this letter is of course different
from the sphere–plate configuration with scalar fields, but we see that our correction term
in the factor f (d/a) is positive. There is thus a qualitative agreement between our result
and the optical method result for scalar fields, equation (10), as well as with the numerical
result in [26].

• We next consider the correction coming from finite temperatures. This point is quite
subtle. It is instructive to start with the case where two parallel plates are separated by a
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gap d. The general condition for applying T = 0 theory with reasonable accuracy is that
T d 	 1 (in natural units). Consider, for example, two gold plates at a gap of d = 1 µm;
from figure 5 in [16] it follows that the surface pressure is about 1 mPa at T = 300 K
and about 1.15 mPa at T = 0, thus a decrease of 15% at room temperature as compared
with zero temperature. As we mentioned earlier, the parallel plate experiment of Bressi
et al [15] may even have been able to measure this temperature effect for the case of
narrow gaps, d � 0.5 µm. (In this experiment the plates were actually coated with
chromium rather than with gold; when d = 0.5 µm corresponding to T d = 0.065 at
room temperature, the surface pressure is calculated to be 15.5 mPa whereas the T = 0
theory yields 20.8 mPa. The theoretically predicted force reduction is thus somewhat
greater than above, about 25%; cf also the discussion in [16].)

No consensus has so far been reached in the literature as regards the temperature correction,
not even in the simple case of parallel plates. The essential physical point is whether the
transverse electric (TE) mode contributes to the Casimir effect for a metal in the limit of zero
frequency, corresponding to a Matsubara integer equal to zero. In our opinion it does not,
as spelled out in detail in ([16]. The papers of Sernelius and Boström are in agreement with
this opinion [28–32]. It implies, as mentioned, that the Casimir force is weaker (by some
per cent when d = 1 µm) at room temperature than at zero temperature. By contrast, the
recent paper of Chen et al [33], which is based upon a reanalysis of the earlier atomic force
microscopy experiment reported in [14], claims the temperature correction to be so small as
to be negligible. In that apparatus a gold-coated polystyrene sphere, mounted on a cantilever
of an AFM, was brought close to a metallic surface and the deflection of the cantilever was
measured as a function of the distance. As a general remark on this experiment, in spite of the
apparent excellent agreement of the experiment, one suspects that the accuracy of it has been
overestimated. As discussed by Iannuzzi et al [34], and by Milton [2], at very short distances
d (in the experiment the shortest distance was equal to 62 nm), the force at d = 62 nm differs
from the force at = 62 + δ by more than 3.5 pN (the experimental uncertainty claimed by the
authors) when δ is larger than a few angstroms. This implies that d should have been measured
with atomic precision in order to correspond to the accuracy claimed. One may compare this
with the real error in the experiment: the value of d was determined with ±1 nm accuracy.
Moreover, the reason for the claimed smallness of the temperature correction in [33] is that
the analysis is based upon the plasma dispersion relation, which in turn implies that the zero
TE mode contributes to the Casimir force.

After these introductory remarks on the parallel-plate geometry,we now turn to the finite
temperature version of the expression (8). It is convenient to work in terms of the free energy
F, instead of the force Fz. The relationship between these quantities is Fz = ∂F/∂b (recall
that Fz is with our sign conventions positive, whereas the interaction free energy F has to be
negative). The finite temperature version of F is given by

βF = 1

2

∞∑′

m=0

∞∑
l=1

ν ln

[(
1 − AF (x)

el(y)

sl(y)

) (
1 − AG(x)

e′
l (y)

s ′
l (y)

)]
, (13)

where β = 1/T , ν = l + 1/2, x = 2πma/β and y = 2πmb/β being the nondimensional
frequencies. The prime on the m summation means that m = 0 is to be taken with half-weight.

We shall consider some limiting cases of this expression. First consider the static case,
whereby we mean that the frequency is zero (m = 0). This means that we take the analytical
limits of sl(x) and el(x) when x → 0. The result becomes (cf [22]):

βF(m = 0) = 1

2

∞∑
l=1

ν ln

[
1 −

(a

b

)2ν
]

. (14)



Letter to the Editor L55

In this formula, the radii a and b are arbitrary. The case, where this formula is most useful, is
that of moderate or large gap widths. For comparison, we mention that at room temperature the
Casimir force between a large (a = 300 µm) gold sphere and a copper plate gets its dominant
contribution from the zero frequency when d is greater than about 0.7 µm (cf figure 3 in [35]).
The physical reason is that for large d it is generally the low frequencies that become most
important.

Consider the next case of finite temperatures, assuming the gap to be narrow, ξ ≡ d/a 	
1. Then, from the uniform asymptotic (Debye) expansions for the Riccati-Bessel functions
we obtain, to the first order in ξ [20]:

βF =
∞∑

m=0

′ ∞∑
l=1

ν ln
(
1 − e−2ξ

√
ν2+m2t2)

, (15)

where t = 2πa/β is the nondimensional temperature. This expression puts no restriction on
the temperature.

Finally let us consider the case of high temperatures. Then, only the lowest Matsubara
frequency m = 0 contributes, and we are led back to expression (14). If we in addition require
ξ to be small, we obtain [20]

βF(m = 0) = 1

8π

∫ ∞

0
q dq ln(1 − e−2qd) = − ζ(3)

32πd2
. (16)

This is the same as the m = 0 expression obtained for the free energy for parallel plates [35].
(Recall that when the PFA is assumed, it is this expression that is used for the force calculation
for a sphere/plate system.)

Numerical calculations show in general that there is for low temperatures a flat plateau
for the free energy extending up to quite high values of t. For instance, when d/a = 0.05 the
T = 0 theory can be used up to log10 t ≈ 1.3, or t = 20 (figure 6 in [22]). Since dimensionally
t = 2πakBT /h̄c, this corresponds to T ≈ 140 K if a = 50 µm.

For low and moderate temperatures, as mentioned, the Casimir force diminishes with
increasing T. For comparison, when dealing with the force between a gold sphere and a copper
plate, we found in [17] the T = 300 K force to be weaker than the T = 0 force by 3.6% in the
case of a width d = 0.2 µm. This is comparable in magnitude with the experimental results
of Decca et al [36, 37].

To conclude: it should in principle be possible to measure expression (9) for Fz, given
that experimental lateral stability problems for the sphere can be overcome. One should thus
expect to be able to check the predicted effective area factor of πa2. A practical problem
is however that the last correction factor in equation (9) appears to be of the same order of
magnitude as the temperature correction.
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